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ABSTRACT

A problem arises when conventional kinematic equations

that minimize computational time are used to model a rigid

revolute robot arm. Mathematical singularities result when

successive link axes "line up" such that their angles are 0

or 180 degrees. This may result in erratic and

uncontrollable motion of the arm until it moves away from

the point of singularity. One solution is to spend a

minimum amount of time at the singular position or to avoid

it altogether. Another solution is to use other sets of

equations, instead of the regular resolved-rate equations,

to model the robot arm. This thesis shows how using

equations based on Newton's Second Principle of dynamics

for a three link, two degree of freedom manipulator, the

problem of singularity is avoided. The equations are

demonstrated in a simulation program.
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TABLE OF SYMBOLS AND ABBREVIATIONS

COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

..

.,.A A Sine wave input torque data
,,-' -. amplIi tude

AA Aa Acceleration of point a

AB Ab Acceleration of point b

V'..

-. AG1 Agl The acceleration vector of
%°.* , ithe center of gravity for~link 1

AG2 Ag2 Same as Agl but for link 2

I..

ATABLEgO SYaBOS AN ABRVAIONS fr in

_AOX aox Linear acceleration of link
zero in the x direction

A0Y aoy Linear acceleration of link
zero in the y direction

A0Z aoz Linear acceleration of link
zero in the z direction

Ai axl Linear acceleration of link

1 in the x direction
AY1 ayl Linear acceleration of link

1 in the y direction
AZ1 azl Linear acceleration of lnk

1 in the z direction

zeoi7h ieto



COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

AX2 ax2 Linear acceleration of link
2 in the x direction

AY2 ay2 Linear acceleration of link
2 in the y direction

AZ2 az2 Linear acceleration of link
2 in the z direction

AX3 ax3 Linear acceleration of link
3 in the x direction

AY3 ay3 Linear acceleration of link
3 in the y direction

AZ3 az3 Linear acceleration of link
3 in the z direction

CTHETX(3) cex A 1x3 vector Cartesian
value of the angle theta
for link 1-3 in the x
direction, results from
taking the integral of
angular acceleration in the
z direction twice, in
degrees

CTHETY(3) coy Same as cex but in the y
direction

CTHETZ(3) cez Same as cez but in the z
direction

DEGRA Conversion from degrees to
radians

ETHETX(3) ex A 1x3 vector of euler
angles for link 1-3 in thex
direction, in degrees

ETHETY(3) ey Same as Ox but in the y
direction

ETHETZ(3) ez Same as Ox but in the z
direction
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COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

EULORY(3) they3 Theoretical Euler angle for
link 3 in the y direction,
in degrees

ERROR(3) Error(3) % error between they3 and
Oy for the third link in
the y direction

ERRTlX Errtlx % error between computed
and input value of torque
at joint 1

ERRT2X Errt2x Same as Errtlx but at Joint
2

FXO Fzo Computed force in the z
direction at joint 0

FYO Fyo Computed force in the y
direction at Joint 0

FZ0 Fzo Computed force in the z
direction at Joint 0

FX1 Fxl Computed force in the x
direction at joint 1

FYI Fyl Computed force in the y
direction at joint 1

FZ1 Fzl Computed force in the z
direction at Joint 1

FX2 Fx2 Computed force in the x
direction at joint 2

FY2 Fy2 Computed force in the y
direction at Joint 2

FZ2 Fz2 Computed force in the z
direction at Joint 2

G g Gravitational constant
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COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

HDX(2) HDx The time rate of change of
angular momentum of a 2
element composite body in
the x direction

HDY(2) HDY Same as HDx but in the y
direction

HDZ(2) HDz Same as HDx but in the z

direction

I Counter

IA Row dimension of matrix A
and matrix B used in LEQT2F
subroutine

IER Error parameter used in
subroutine LEQT2F

IDGT Accuracy test used in
subroutine LEQT2F, for
iterative improvement

IXX(3,2) Ixx A 3x2 matrix of Moment of
Inertia for the two element
composite body of link 1-3
about the x axis

IYY(3,2) Iyy Same as Ixx but about the y
axis

IZZ(3,2) Izz Same as Ixx but about the z
axis

IXZ(3,2) Ixz A 3x2 matrix of Products of
Inertia for the two element
composite body of link 1-3
about the xz coordinate
axes

IXY(3,2) Ixy Same as Ixz but for the xy
axes

IYZ(3,2) Iyz Same as Ixz but for the yz
axes
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* ~COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

IXXA(3,2) Izza Theoretical Moment of
inertia for link 3 about

* joint 2

JXO ixo Location of Joint 0 in the
x direction

JYO jyo Location of Joiint 0 in the
y direction

JZO izo Location of Joint 0 in the
z direction

JXl Jxi Location of Joint 1 in the
x direction

JYl Jyl Location of Joint 1 In the
y direction

Jzl izi Location of Joint 1 in the
z direction

JX2 Jx2 Location of Joint 2 in the
x direction

JY2 iy2 Location of Joint 2 in the
y direction

JZ2 Jz2 Location of Joint 2 in the
z direction

L(3,2) L(3,2) A 3x2 matrix that is the
distance from center of
link to center of mass at
each link end

LCOGX(3) LCOGz A 1x3 location of center ot
gravity vector for link 1-3
in the x direction

LCOGY(3) LCOGy Same as LCOGx but for the y
direction

LCOGZ(3) LCOGz Same as LCOGx but for the z
direction



COMPUTER TEXT DECRIPTION sbot

as number of right hand
P4 sides

MASS(3,2) Nass(3,2) A 3Z2 matrix of mass of
each element that make up
the composite body for link

MAS ~ Ml otal mass of l nk3

MASS2 M2 Total mass of link 2

MASS3 M2 Total mass of link 3

MATA(27,27) MatA A 27x27 matrix consisting
of coef ficients of the
unknown variables

MATB(27) MatB A 1x27 vector consisting of
the coefficient of known
variables on input to
subroutine LEQT2F and an
Output the solution to the
linear equations

MI Results from subroutine
CPROD, i component of
vector cross product

NJ J component of vector
cross product

MK k component of vector
cross product

MIAO, MJAO and Cross product between wdl
MXAO and RB/Gl at Joint 0.

link 1, in the x, y, z
direction

MIBO, MJBO and Cross product between wl
MKBO and RB/Gl at Joint 0, link

1, in the x, y, z direction
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COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

MICO, MJCO and Cross product between wl
MKC0 and MIBO, MJBO and MKBO at

joint 0, link 1, in the x,
y, z direction

MIAl, MJAl and Cross product between wdl
MKA1 and RA/Gi at Joint 1. link

1. in the x, y, z direction

MIB1, MJBl and Cross product between wl
MKB2 and RA/Gi at joint 1, link

1, in the x, y, z direction

MIC1, MJC1 and Cross product between wl
MICi and NIBi, HJBl and MKB1

respectively at joint 1,
link 1, in the z, y, z
direction

MIA2, MJA2 and Cross product between wd2
MKA2 and RB/G2 at joint 1. link

2, in the x, y, z direction

MIB2, MJB2 and Cross product between w2
MKB2 and RB/G2 at Joint 1. link

2, in the x, y, z direction

MIC2, MJC2 and Cross product between v2
MKC2 and MIB2, MJB2 and MKB2

respectively at joint 1,
link 2, in the x. y, z
direction

MIA3, MJA3 and Cross product between wd2
MJA3 and RA/G2 at Joint 2, link

2, in the x, y, z direction

HIB3, MJB3 and Cross product between w2
MKB3 and RA/G2 at joint 2, link

2, in the x, y, and z
direction
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COMPUTER TEXT DESCRIPTION

SYMBOL VARIABLE

MIC3, MJC3 and Cross product between w2
MKC3 and HIB3, MJB3 and MKB3

respectively at joint 2,
link 2, in the x, y, z
direction

MIA4, MJA4 and Cross product between wd3
MKA4 and RA/G3 at joint 2, link

3, in the x, y, z direction

MIB4, MJB4 and Cross product between v3
MKB4 and RA/G3 at joint 2, link

3, in the x, y, z direction

MIC4, MJC4 and MJC4, MJC4 and Cross
MKC4 product between w3 and

MIB4, NJB4, and MKB4
respectively at joint 2,
link 3, at the x, y, z
direction

N Used in LEQT2F subroutine
for the order of MatA and
number of rows of vector B

P Phase angle of sine wave
input to joints

RUN Number of the run
conducting

RX(3,2) Rx(3,2) A 3x2 matrix consisting of
the distance from the
center of gravity of the
link to center of mass for
the elements of link 1-3 in
the x direction

RY(3,2) Ry(3,2) Same as Rx(3,2) but in the
y direction

RZ(3,2) Rz(3,2) Same as Rx(3,2) but in the
z direction

14
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COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

RAG1(3) ra/G1 A lx3 vector, distance of
point a to center of
gravity for link 1, in the
x, y, z direction

RBGl(3) rb/Gl A 1x3 vector, distance of
point b to center of
gravity for link 1, in the
x, y, z direction

RAG2(3) ra/G2 A 1x3 vector, distance of
point a to CoG for link 2,
in the x,y,z direction

RBG2(3) rb/G2 A 1x3 vector, distance of
point b to CoG for link 2,
in the x, y, z direction

RBG3(3) rb/G3 A 1x3 vector, distance of
point b to CoG for link 3,
in the x, y, z direction

SUMHDX(3) EHDx A lx3 vector, sum of HDX
for the two elements of
link 1-3 in the x direction

SUMHDY(3) EHDy Same as EHDx but in the y
direction

SUMHDZ(3) EHDz Same as EHDx but in the z
direction

THETXR(3) A lx3 vector of euler
angles in the x direction
in radians for link 1-3

THETYR(3) Same as THETXR(3) but in
the y direction

THETZR(3) Same as THETXR(3) but in
the z direction

TOX, TOY Tox, Toy, Input torque at joint 0 at
TOZ Toz the x, y, z direction

is



1I,*. V~ .,

*COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

TiX, T1Y Tix, Tly Input torque at Joint 1 at*TlZ Tlz the z, y, z direction

T2X. T2Y T2x, T2y Input torque at Joint 2 atT2Z T2z the x, y. z direction

THDDOT(3) Theoretical value of wdx
for link 3 in degrees

THEORY( 3) Theoretical value of vdx
for link 3 in radians

THEXR1, THEXR2, Second integral of wdz forTHEXR3 links 1-3 in radians

THEYRi. THEYR2, Second integral of vdy forTHEYR3 links 1-3 in radians

THEZR1. THEZR2, Second integral of vdz forTHEZR3 link 1-3 in radians

TORY1X Torylx Computed value of torque
for Joint 1

TORY2X Tory2x Computed value of torque
for Joint 2

TX1, TX2, TX3 Euler angle theta converted
to radians for links 1-3
respectively in the x
direction

TY1. TY2, TY3 Euler angles theta
converted to radians for
links 1-3 respectively in
the y direction

TZI, T22, TZ3 Euler angles theta
converted to radians for
links 1-3 respectively in
the z direction

VECTAO(3) and lx3 vector used inVECTBO(3) subroutine CPROD for Joint
0

16



COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

VECTA1(3) and lx3 vector used in
VECTBI(3) subroutine CPROD for Joint

1

VECTA2(3) and lz3 vector used in
VECTB2( 3) subroutine CPROD for Joint

2

VECTA(3) and 1z3 vector used in
VECTB(3) subroutine CPROD

V Frequency of sine function
input

Wl, V2, and Wl,*2,V3 Weights of link 1. 2, and 3
W3

WX(3) wx(3) A 1x3 vector of angular
velocity of link 1-3 in the
x direction

IWY(3) vy(3) Same as vx(3) but in the y
-' direction

V Z(3) vz(3) Same as wx(3) but in the z
direction

WDX(3) wdx(3) Angular acceleration of
link 1-3 in the x direction

WDY(3) wdy(3) Angular acceleration of
link 1-3 in the y direction

WDZ(3) wdz(3) Angular acceleration of
link 1-3 in the z direction

NKAREA Work area for LEQT2F
subroutine

Xl. X2 and Location of center of
X3 gravity for link 1-3 in the

LN x direction

Y y Theoretical value of y
distance from Fz2 to center
of gravity of link 3

17



COMPUTER TEXT DESCRIPTION
SYMBOL VARIABLE

Y1, Y2 and Location of center of
Y3 gravity for link 1-3 in the

y direction

z z Theoretical value of z
distance from Fy2 to center
of gravity of link 3

ZI, Z2 and Location of center of
Z3 gravity for link 1-3 in the

z direction
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I. INTRODUCTION

Manipulator models which use local coordinates as a

basis for simulation and control have a mathematical

singularity built into them (Ref. 1]. This singularity

occurs when rigid robot links align such that their

relative position is either 00 or 1800. When this happens,

the inverse of the Jacobian matrix becomes impossible to

compute and the forward dynamics solution cannot be found.

In the control of serial link manipulators there have

been various approaches which use local coordinates to

achieve computational efficiency. One method deals with the

Newton-Euler approach (Refs. 2, 31, another uses the

Lagrangian approach (Refs. 4, 51 or there is the method of

virtual work (Ref. 61. Still another that has tried to make

the solution to the dynamic equations computationally

efficient by using Kane's Dynamical equations (Ref. 71.

However, although these methods have been computationally

efficient, they have not been able to handle the problem of

singularity [Ref. 1].

'. 20
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Various methods have been proposed to deal with the

problem of singularity. One such method is to minimize the

time near the singularity (Ref. 81, thereby reducing its

effects. Another solution is to avoid the position of the

manipulator that caused the singularity (Refs. 9, 101.

However, when using resolved rate equations the arm may

pass through a point of singularity anyway, in response to

a command [Ref. 113. Nakamura and Hanafusa (Ref. 121 have

proposed to determine the joint motion for the requested

motion of the end effector by evaluating the feasibility of

the Joint motion. This determined Joint motion is called an

inverse kinematic solution with singularity robustness.

Other solutions deal with presenting equations that can

translate the manipulators in the neighborhood of

singularity [Refs.13,14] and in identifying geometric

singular positions (Ref. 151.

It has also been shown that redundancy of robot

manipulators is effective in dealing with singularities

[Ref. 16]. Klein and Huang (Ref. 17] have studied the

method of pseudo-inverse control, for use with redundant

manipulators, with recommendations for improvement.

Uchiyama (Ref. 181 proposed switching the control mode in

the neighborhood of singular points from the mode using

inverse kinematics to the Joint control mode. A seven

degree of freedom kinematic design with a spherical

shoulder joint was proposed (Refs. 19, 201, as well as a

" -I' - "" -.,! -b ' - ' - i " " """"""- '" " " ". ." ; ," -"- "- ." - - " ",", "- / ' ". ". .



seven Joint robot [Ref. 21] to handle singularity. A four

degree of freedom wrist was studied to overcome wrist

singularity (Ref. 22). Shih [Ref. 23] looked at the

physical quantities and combinations of physical quantities

which are unaffected by redundancy to simplify the

solution of a redundant system. However, even though there

are some redundant manipulators constructed (Refs. 24, 25],

research cannot do away with singularities, and so

consideration still has to be given to the control of the

manipulator in case of inadvertant singularities.

This paper will derive equations of motion using the

First Principles of Newtonian dynamics in terms of global

coordinates in order to eliminate the problem of

singularity. By the method of free body analysis, each link

of the manipulator is treated as if it were a free body

with forces and moments applied at the joints. Only

revolute joints will be considered. Although tedious and

time consuming (computer time), this paper will show by

simulation how the problem of singularity may thus be

overcome.

22I
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II. ROBOT MODELLING AND SIMULATION PROBLEM

This thesis does not deal with the control aspect of

rigid, revolute linkages but rather the mathematical

dynamic modelling. Given the dynamic model, the link masses

and inertia properties, initial link alignments, and Joint

torques, then the Joint forces, acceleration, velocity and

position can be predicted via a simulation program. In the

present approach, all dynamic properties except for

acceleration and forces were assumed to remain constant

over a simulated time interval. This assumption linearized

the equation of motion so that a simple matrix inversion

could be used to solve for the unknowns. As shown in Figure

1, the simulation is updated with the predicted velocity

(Q.) and position (.), following integration at the next

time step. Simulation validation is done by comparing the

theoretical position (thOy3) to the predicted position

(8y3) for link 3 and actual torque (Tlx, T2x) to computed

torque (Torylx, Tory2x) for links 2 and 3.

Mnd l t Ator
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III. THEORETICAL DEVELOPMENT

A. MANIPULATOR ARM CONFIGURATION

This thesis develops a generalized simulation program

for a robot manipulator that is a serial connection of

three rigid links, Jointed by one-degree of freedom

revolute Joints. Joint actuators are assumed to be located

between successive links to apply the torque necessary to

position the link.

B. THEORY

The method of solution is based on the principle of

free body analysis. For this approach each body of the

three link manipulator is treated as if it were a free body

with forces and moments applied at each Joint, as shown in

Figure 2. The global cartesian coordinate system X, Y, Z as

well as force and moment torque conventions are also

evident in the figure. Note that a local coordinate system,

that is a coordinate system that is local to each Joint,

will not be used but rather a single global system will be
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adopted. So all positions, distances, etc., will be

referenced to the base of the manipulator system which will

be at Joint zero. The effects of flexibility of the robot

manipulator will not be considered since ideal, rigid

bodies are assumed.

In developing the dynamic equations of motion for each

link Newton's Second Principle of Notion is used. The known

variables are torque at the joints, mass of each link,

linear acceleration of joint zero, initial angular

acceleration, angular velocity and position of all links.

The unknowns are the forces at the joints, linear and

subsequent angular accelerations of the links.

C. DYNAMIC EQUATIONS OF NOTION OF LINK ONE

1. Sum of Forces Eauations

In the free body analysis of link one (Figure 2) the

sum of the forces in the x direction is:

-* EFx=Fxl - FxO= Nlaxl (1)

Similarly sum of the forces in the y direction is:

EFy-Fyl - FyO-Hlayl (2)

and the sum of the forces in the z direction is:

EFz-Fzl - FzO - Vl=Hlazl (3)
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2. Joint Eauations

We begin by evaulating the Joint equations at joint

zero (Ref. 26, equation (8/4), pp. 423). If the joint is

sequested and analysis conducted at a point on link zero

(subscript a) and another at a point on link one (subscript

b) that is common to both, so when linked together they are

equal. This results in two equations and the two unknowns

wdl and wl.

As a result:

which is the acceleration at Joint zero,

and

Ab = Al +(wdl X rb/G1) + wl X (wl X rb/Gl)

which is the acceleration of point b on joint one. Here

rb/G1 is the distance from point b to the center of gravity

of link one, and Al is the acceleration at the center of

mass of link one or,

rb/Gl=(JxO-LCOGzl)i + (JyO-LCOGyl)J + (JzO-LCOGzl)k

=rb/Glz + rb/Gly + rb/Glz

After equating Aa and Ab and having the known variables on

the right side of the equation and unknown variables on the

left side the following sets of equations result:

Axl + wdyl(rb/Glz)-wdzl(rb/Gly)- Aox-IC0 (4)

where HICO equals
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=wylwxl(rb/Gly)-w ayl(rb/Glx)-va zl(rb/Glx)

+ wzlwxl(rb/Glz)

also

Ayl 4-dzl(rb/Glx)-wdxl(rb/Glz)=Aoy-HJCO (5)

where NJCO equals

*=wzlwyl(rb/Glz)-wa z(rb/Gly)-wlxl(rb/Gly)

+ wxlvyl(rb/Glz)

and

Azi + vdxl(rb/Gly)-wdyl(rb/Glx)=Aoz-HKCO (6)

NKCO equals

=wxlwzl(rb/Glx)-w Z l(rb/Glz)-w yl(rb/Glz)

+ vylwzl(rb/Gly)

3. SumL o met Eauations

Computing the sum of the moment equations about the

center of gravity results in:

EN1-(rO/Gl X FO) +. (ri/Gi X 71)-Ti + TO

where the vector rO/Gi is the distance from Joint zero to

the center of gravity of link one and vector rl/Gi is the

distance from Joint one to the center of gravity of link

one, in the x, y and z directions. Such that

r*/G1 rJo-rGl

and

ri/Gi rJl-rGl

so

rJO-rGl-(xJO-xGl)i + (yJO-yGl)J + (zjO-zGl)k

and
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rj-rGl = (xJl-xGl)i + (yjl-yGl)j + zjl-zGl)k

In the z, y and z directions the sun of moment equations

are:

ENi in x direction-

(-yJO/Gl)FzO + (zJO/G1)FyO + (yJl/Gl)Fzl-(zil/Gl)Fyl

-Tix + TOx (7a)

EMi in y direction-

(-zJO/Gl)FxO + (xJO/Gl)FzO + (zJl/G1)Fxl- (xJl/Gl)Fzl

-Tly + TOy (8a)

EMi in z direction=

(-xJO/G1)FyO + (yjO/Gl)FxO + (xjl/Gl)Fyl-(yjl/Gl)Fxl-Tlz

+ TOz (9a)

From Ref. 26, equation (517) pp.227 the sum of the moments

about a fixed point that does not move with the body is

equal to the time rate of change of angular momentum of the

system (H) about the fixed point. EM-H. In the present

study we have let each link be a composite body of two

elements. The angular momentum (H) for a composite body

where the number of elements of the body is two, about the

center of gravity of each link is Hi-ez (Ri X (w X Ri)]Mi,

where Ri is the distance from the center of gravity of each

link to the appropriate element (lor2) in the x, y and z

direction. So:

Hz E (Ryi(ux(Ryi)-vy(Rxi) )-Rzi(wz(Rxi)wx-(Rzi)) ]Mi

Hz =(R yl(wx)-Ryl(Rxl)(wy)-Rz(Rxl)(wz) + Rzl(wx))Ml

+(R y2(wx)-Ry2(Rz2)(wy)-Rz2(Rx2)(wz) + (R Lz2)wxJH2
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If Izz- fRy 4Rz1 din,

and Izy RzRY din,

and
Izz =RxRy dm,

then:

Hz = Ilxx(wx) - Ilxy(wy) -Ilxz(wz)]H1

+ C12zx(wx) - I2xy(wy) - 12xz(wz))M2.

and

HDx [ Ilxx(wdz) - Ilzy(wdy) - Ilxz(wdz)JNl

+ (12zx(wdz) - 12zy(wdy) - 12xz(wdz)IM2 (7b)

by assuming the moment of inertia does not change with time

but is constant for a given time interval.

By similar analysis it can be shown:

Hy- E CRzi(wy(Rzi)-wz(Ryi))-Rxi(wx(Ryi)-vy(Rxi))JMi
"I2

and if Iyy- JRz + Rz2 din,

*and Iyz= jRyRz da,

and Izy= fRzRy da

then:

HDy=[Ilyy(wdy)-Iiyz(wdz)-Iiyx(wdx) IMi

+ (I2yy(wdy)-I2yz(wdz)-I2yz(wdz)1N2 (8b)

* and

Hz=E (Rxi(wz(Rxi)-wz(Rzi) )-Ryi(wy(Rzi)-wz(Ryi)) IMi.

If Izz= fRx +Ry din.

So
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Hz=[Ilzz(wz)-Ilyz(wy)-Ilzx(wx)]Hl

+ 12zz(vz)-I2yz(wy)-I2zx(wx)]M2

then

HDz=(Ilzz(wdz)-Ilyz(wdy)-Ilzx(wdz)]MIl

+ (I2zz(wdz)-I2yz(wdy)-I2zx(wdx)]M2 (9b)

. Combining equations (7a) and (7b) and keeping known

variables on the right side and unknown variables on the

left side yields:

EMlx- (-yJo/Gl)Fzo + (zJo/Gl)Fyo + (yjl/Gl)Fzl

- (zJl/G1)Fyl-HDz-Tlx-Tox (7)

Combining equations (8a) and (8b) yields:

EMly=(-zJo/Gl)Fxo + (xjo/G1)Fzo + (zjl/Gl)Fxl

- (xJl/Gl)Fzl-HDy=Tly-Toy (8)

combining equations (9a) and (9b) yields:

EHlz=-(xJo/Gl)Fyo + (yjo/Gl)Fxo + (xjl/Gl)Fyl

- (yjl/Gl)Fxl-HDz-Tlz-Toz (9)

D. LINK TWO EQUATIONS

1. Sum of Forces Eauations

From the free body diagram (Figure 2) it follows

that

EFK-Fx2 - Fzl-M2ax2 (10)

EFy-Fy2 - Fyl-N2ay2 (11)

EFz=Fx2 - Fzl=N2az2 (12)
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2. Joint Eauations

Analysis is conducted at joint one where similar

equations are used as in joint zero with a point on link

one (a) and one on link two (b). For point a the equation

is

Al+ wdl X ra/Gi + wl X (wl X ra/Gi)

ra/Gl is a vector whose distance is measured from point a

to the center of gravity of link one in the z, y and z

direction.

ra/Gl=(ixl-LCOGzl)i + (Jyl-LCOGyl)j + (Jzl-LCOGzl)k

-ra/Gix + ra/Gly + ra/Glz

For point b the equation is:

Ab-A 2 + wd2 X rb/G2 + w2 X (w2 X rb/G2)

where rb/G2 is a vector whose distance is measuired fromu

point b to the center of gravity of link two.

rbLG2=(ixi-LCOGx2)i + (Jyl-LCOGy2)j +- (Jzl-LCOGz2)k

=rb/G2x + rb/G2y + rb/G2%

Equating Aa and Ab and setting knowns and unknowns on

the respective sides of the equation results in:

Ax2-Axi + wdy2(rb/G2z)-wdz2(rb/G2y)-wdyl(ra/Glz) +

wdzi(ra/Gly) -NICl-MIC2 (13)

HICl-vylwxl (ra/Gly )-w2yl Cra/Gix) -w2zl (ra/Gix)

+ wzlwxl(ra/Glz)

HIC2=wy2wx2 (ra/G2y) -w2y2 (ra/G2 ) -w2z2 (rb/G2x)

+ wz2wx2(rb/G2z)
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Ay2-Ayl + udz2(rb/G2x)-vdx2(rb/G2z)-vdzl(ra/GlZ)

+ wdzi(ra/Glz)NMJCl-NJC2 (14)

MJCiuwzlwyl(ra/Glz)-v2z1(ra/Gly)-w2xl(ra/Gly)

+ wxlwyl(ra/Glx)

NJC2vwz2wy2( rb/G2z )-w2z2 (rb/G2y) -v2x2( rb/G2y)

+ wx2wy2(rb/G2x)

AZ2-AZl + wdz2(rb/G2y)-wdy2(rb/G2x)-udxl(ra/Gly)

+ wdyi(raIGix)in NKCl-NKC2 (15)

NKI-lwxlwzl(ra/Glz)-w2x1(ra/Glz)-w2yl(ra/Glz)

+ wylvzl(ra/Gly)

NKC2-wx2wz2 (rb/G2z) -v2x2( rb/G2z )-w2y2 (rb/G2z)

+ wy2wz2(rb/G2y)

3. Smof the Moment Eauations

These equations have a similar development as that

of link one:

EV3 =(rjl/G2) X F1 + (rJ2/G2) X F2 + T1-T2

where

rJlIG2-(xJl-zG2)i + (yjl-yG2)i + (zjl-zG2)k

rJ2/G2in(x12-xG2)i + (yj2-yG2)J + (zJ2-zG2)k

EM2x= -(yjl-yG2)Fzl + (zjl-zG2)Fyl + (yj2-yG2)Fz2

-(z12-zG2)Fy2 + Tlx-T2z (16a)

E142y- -(zJl--zG2)Fxl + (xJl-xG2)Fzl + (zJ2-zG2)Fx2

- (zJ2-xG2)Fz2 + Tly-T2y (17a)

EM2z-- (xjl-zG2)Fyl + (yjl-yG2)Fxl + (xj2-xG2)Fy2

-(yj2-yG2)Fx2 + Tlz-T2z (lea)

From angular momentum equation developed for link one, it
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can be shown for link two:

EH2x-HDx (16b)

EN2y-HDy (17b)

EM2z-HDz (18b)

Combining equations (16a) and (16b) the following result:

-(yjl-yG2)Fzl + (zjl-zG2)Fyl + (yi2-yG2)Fz2-(zj2-zG2)Fy2

-HDz---Tlz + T2x (16)

Combining equations (17a) and (17b) yield the following

result:

-(zjl-zG2)Fxl + (xjl-xG2)Fzl + (zj2-zG2)F'x2-(xJ2-xG2)7z2

-HDy--Tly + T2y (17)

-. Combining equations (18a) and (18b) yield the following

result:

-(zjl-zG2)Fyl + (yJl-yG2)Fzl + (x12-xG2)Fy2-(yj2-yG2)Fx2

-HDz--Tlz + T2z (18)

E. LINK THREE EQUATIONS

1. sun of Forces Eguatigns

Following similar logic from that previously

developed:

EFz- -Fz2-M3ax3 (19)

EIlY. -Fy2-M3ay3 (20)

EFz= -Fz2 - V3-M3az3 (21)

2. Joint Eguations

With point a on link two and point b on link three

one gets for joint equations at joint two:
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Aa=2 +(wd Xra/G2) + w2 X (w2 X ra/G2)

whee r/G2is a vector whose distance is measured from

poit atocenter of gravity of link two in the x~y and z

drect2ion.Oz) +(y-.O~2i+(z2LOz)

=ra/~x +ra/G2y + ra/G2z

Ab=A3 + wd3 Xrb/G3 + w3 X (w_; X rb/G3)

where rb/G3 is a vector whose distance is measuree from

point b to center of gravity of link three in the z, y and

z direction.

rb/G3-(Jx2-LCOGx3)i + (jy2-LCOGy3)j + (Jz2-L.COGz3)k

-rb/G3z + rb/G3y + rb/G3z

Equating Aa and Ab and setting knowns and unknowns on the

respective sides of the equation results in:

Ax3-Ax2 + wdy3(rb/G3z)-wdz3(rb/G3y)-wdy2(ra/G2z)

+' wdz2(ra/G2y)=HIC3-NICl (22)

MIC3=wy2wx2 (ra/G2y )-w2y2 (ra/G2x) -w2z2 (ra/G2x)

+. wz2wx2(ra/G2z)

MIC4- wy3w3(rb/G3y)-w2y3(rb/G3x)-w2z3(rb/G3X)

+~ wz3wz3(rb/G3z)

Ay3 -Ay2 + wdz3(rb/G3x)-wdx3(rb/G3z)-wdz2(ra/G2 x)

+wdx2( raIG2z) -NJC3-HJC4 (23)

MJC3-wz2wy2(Cra/G2z )-w2z2(Cra/G2y) -w2x2 (ra/G2y)

+ wx2wy2(ra/G2x)
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NJC4=-wz3wy3 (rb/G3z )-w2z3(Crb/G3y) -w2x3 (rb/G3y)

+ wx3wy3(rb/G3x)

AZ3-AZ2 + wdx3(rb/G3y)-wdy3(rb/G3x)-wdx2(ra/G2y)

+ wdy2(ra/G2x)= HKC3-HKC4 (24)

HKC3=wz2wz2( ra/G2 ) -w2z2 (ra/G2z ) -2y2 (ra/G2z)

+ wy2wy2(ra/G2y)

MKC4=wx3wz3 (rb/Gas) -w2x3 (rb/G3z )-w2y3 (rb/G3z)

+ wy3wz3(rb/G3y)

3.Sum of Moment Equations

As in the development of the equations for link one:

EM3=(rj2/G3) X F2 +T

where rJ2/G3-(xj2-xG3)i + (yJ2-yG3)j + (zj2-zG3)k

=zj2/G3 + yj2/G3 + zj2/G3

EH3x=-yj2/G3)Fz2 + (zj2/G3)Fy2 + T2x (25a)

EH3y- (-zj2/G3)Fz2 + (xj2/G3)Fz2 + T2y (26a)

EM3z=(-xJ2/G3)Fy2 + (yj2/G3)Fx2 + T2z (27a)

From the angular momentum theory:

EM3x-HDx (25b)

EN 3y-HOy (26b)

EM3z-HDz (27b)

Combining equations (25a) and (25b) the following results:

(-yl2/G3)7z2 + (zj2/G3)Fy2-HDx= -T2x (25)

Combining equations (26a) and (26b) the following results:

(-zJ2/G3)7x2 +(zJ2/G3)Fz2-HDy= -T2y (26)

Combining equations (27a) and (27b) the following results:

(-xj2/G3)Fy2 + (yj2/G3)Fx2-HDz= -T2z (27)
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IV. COMPUTATIONAL APPROACH

The language chosen to write the program was the

Digital Simulation Language (DSL) using Fortran 77 coding.

This language does an excellent dynamic simulation that

allows the user to be interactive, with real time

processing vice batch mode processing commonly used with

the Continuous System Modelling Program (CSMP), and all

calculations done in double precision. The source code

produced for this program was complied on an IBM 3033

computer using a Fortran 77 compiler.

A. PRINCIPLE PROGRAM MATRICIES

A 27x27 Matrix A (KatA) was created from the

coefficients of the unknowns (forces, linear acceleration

and angular acceleration) from equations (1) to (27).

Correspondingly a 27xl Matrix B (MatB) was generated from

equations (1) to (27) from all knowns (torques, angular

velocities, link masses, and various positions). Subroutine

CPROD was used to conduct all cross products required in

the main program. Subroutine (LEQT2F) was then called from

the INSL library. This subroutine takes MatA inverts it,

multiplies it by MatB and solves the generalized equation

A:=b for the b vector using Gaussian elimination with
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Iterative improvement to get accuracy within six decimal

digits. The output from LEOT2F returns from the subroutine

via MatB. This output is then used by the INTGRL DSL

statement to take the integral of angular acceleration

(wdx, wdy, wdz) to get angular velocity (vx, wy, wz) and

again to get the position of the link with respect to theta

(cex, cOy, cez) for each torque input per time step. The

cartesian orientations are converted to Euler angles (Ox,

ey, ez) prior to returning to the beginning of the program.

The method used to solve the second order differential,

equation for accelerations is invoked by ADAMS which is the

second order, variable step integration ADAMS method. This

method was shown to be the fastest (CPU time) and most

accurate of the methods available [Ref. 8]. Similarly,

INTGRL is applied to find the linear acceleration (A) of

each link, velocity (V) and finally the position of the

center of gravity of the link. These newly found values are

fed back into the beginning of the simulation program for

the next time step until the end of the interval. This

process is summarized in Figure 3.
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Constraints are also built into the simulation program

that enable the operator to limit the movement of the links

in the yz plane for a two dimensional demonstration of

link-three-only movement. The constraints are also used for

link two and three movement. The constraints are applied by

zeroing out a row, except for the diagonal which is set to

1.0. The MatB entry is set to the constrained value.

It is during this simulation that a differentiation

should be made between the cartesian theta (cO) position

developed by the INTGRL function (Figure 4a) and the Euler

angler theta (0) used as direction angles in computing

distances (Figure 4b). When in the yz plane the angular

acceleration is about the x axis and when the integral is

taken twice with respect to time, what results is the angle

theta about the x axis. This cartesian angle is defined as

cex and is obviously not the same as the theta angle used

to position the link initially which is defined as 8y. To

resolve this discrepancy when cOx is computed it is

converted to the euler angle Oy by setting the two equal so

ey=cex, in a two-dimensional simulation. Additionally,

euler angle ez-90 0 -ey and ex=90 0 whenever simulating, two-

dimensional yz plane motions.
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B. PROGRAM VALIDATION

Validation of the simulation program takes place in two

ways.

1. Validation of One Link Case

For link three the theoretical value of theta in the

x direction (thft3), is compared to the value of theta in

the x direction (Gx3) that the simulation computed for each

time step (Appendix A has the program listing).

As a test case,the torque delivered at joint two was

assumed to be:

TUx-10sin(2zt).

Also, Izia. the moment of inertia about joint two, is equal

to mass at the end of the link M(3,2) times the distance

from Joint two to the mass at the end of the link, squared

or,

Ixxa=H(3,2) x (L(3,2) + L(3,1))

This may be used to solve for thOx by taking the integral

with respect to the time which results in:

thox3-IJU

IIa(2) 2xa

Jt thex3 dt-z.-....os lott

tbhx3(.L......(cos2zt) + IQ_-) 1..
2z 2z Izxa

Jth~x3 dtin thex3(L..sin(2it) + IQI..9l.... + I.
4x**2 2z Ixxa 4
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For comparison % error is used so

%a error-(th3-j6.L~ x 100
max th~x3

2. Validation of Two Links Case

For the validation of two links the computed torques

at Joints two and Joint one (Tory2x, Toryix) are compared

to the torques that are actually input (T2x, Tix) at each

time step (Appendix B has the program listing). If there

are no effects of singularity then the theoretical torque

and input torque should be very similar. From Figure 2 the

sum of the moments about the center of gravity of link

three is:

* EM3=M3(L(3,2)2(wdx(3))=T2x + Fz2y - Fy2z

so

T2x-H3(L(3,2))2(wdx(3)) - Fz2y +- Fy2z=Tory2x

where

y=L.(3,1) (cos(ey3))

Fy2=(-M3) (ay3)

z=L(3,l) (cos(0y3))

Fz2=(-M3) (az3)

Sum of the moments about the center of gravity of link two

is:

EN2-Ixz2(wdx(2))=Tlx-T2x + Fzlcos(8y2)(L(2,l))

-Fylsin(Oy2)(L(2,l)) + Fz2cos(ey2)(L(2,2))

-Fy2sin(Gy2)(L(2,2))

so

43



where

Fyl-Fy2-H2ay2.

For comparison the % error is used for difference in

torque for Joint two and Joint one:

Errt2x=( Tory2x-T2z) /(mazTory2x) x 100

Errtlx=(Torylx-Tlx)/(mazTorylx) x 100
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V.R

A. MOVEMENT OF LINK THREE

Analysis of the movement of only link three shows very

good results for program validation. Figure 5 shows a plot

of Euler angles for both theoretical (they3) and simulated

(ey3) values, the graph shows indistinguishable

differences. To further visualize the difference Figure 6

was plotted, which is the % error between they and Oy

versus time. There seems to be greater error (0.0032%) at

around 0.8 seconds than at 0.2 seconds. This could possibly

be caused by error buildup in the computation due to round

off error from subroutine LEQT2F and truncation error from

approximating the solution to the second order differential

equation by the ADAMS method. Additionally, inaccuracies

could occur in estimating the value of i and using it in

trigonometric calculations.Howeverthe % error is small and

is acceptable to verify the proper operation of the program

for the single degree of freedom case.

.'4
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B. MOVEMENT OF LINK TWO AND THREE

Analysis of the movement of link two and three is the

crucial test of how the simulation deals with the problem

of singularity. A torque was input to joint two and an

opposite torque to joint one. At some point the alignments

of the two links will have some absolute angle of 00

(Figure 7) relative to each other. At this time if

singularity exists there is no longer any control of the

links and accelerations and velocities vary abnormally,

never returning to the level they were at before the

singular position was reached (Ref. 81. So the reason for

comparing the values of the computed torques (Tory2x,

Torylx) given the position variables solved for by the

simulation program and the torques input to the joints

(T2x, Tlx), is to check for abnormalities. Figure 8 shows

the graph of computed and input torques for joint two and

Figure 9 shows the graph of computed and input torques for

joint one versus time. The two curves match very well and

shows almost no deviation between them for the scale used.

When the % errors are plotted between computed torque

and input torque versus time for links two and one (Figures

10 and 11) again very little % error is observed with the

largest being around 0.024% at time 2.8 seconds for torque

input at joint one. This may be attributed to the similar

reasons as the one-link since now both link two and three

are moving these errors are building as time increases. It
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is also observed in Figure 10 that the % error is not

smooth but erratic and causes a "spikey" curve fit.

However, the error comes back down to the zero plateau

instead of remaining at a high level which is what would

have happened had singularity occurred. The overall %

errors are small and so lends credability to the simulation

model. Figure 7 was plotted to see at what point the two

links align themselves and to get a picture of about how

long they are close (within one degree) to the point of

singularity. It appears to be 0.5 seconds which is enough

time for singularity to have a strong effect (Ref. 8].

S4
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VI. CONCLUSIONS

The ability of a global two degree of freedom robot arm

to maneuver through a point of singularity under applied

torques was demonstrated. This was verified by comparing

the computed torque at joint one and two in the x direction

to the values that were input. There were no unusual or

abnormal results occurring in the acceleration or

velocities and so little error was produced.

.'
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VII. RECOMMENDATIOMS

The following recommendations are provided:

1. Develop a linearized manipulator model and a

corresponding controller for the two degree of freedom

case.

2. Validate the approach via actual empirical tests for the

two dimensional case. This will establish the difficulty of

determining accurate constants for the simulation and

controller design.

3. Demonstrate the model and controller in 3 dimensions

with 3 links. The difficulty here arises in analyzing the

direction of a given Joint torque in 3 dimensions. This

could probably be done by finding a unit normal vector

perpendicular to the Joint in the x, y and z direction and

multiplying it by the torque magnitude.

4. Validate the approach by implementation for the three

dimensional case.
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APPENDIX A

SIMULATION PROGRAM FOR MOVEMENT OF LINK THREE

TERMINAL
METHOD ADAMS
PRINT .01 ,ETHETY(3) ,EULORY(3) ,ERROR(3)
CONTROL FINTIM =1.0, DELMAX =.01, DELPRT =.01
SAVE .01,ETHETY(3),EULORY(3 ,ERROR(3)

GRPHDE=TEK618 TIME,ETHET4 (3)
GRAPH (DE=TEK618 STIME,ERROR(3)
GRAPH (DE=TEK618) TIME,EULORY(3)
D DIMENSION MATA(27 27),MASS(3i2),L(3 2) RX(3 2),RY(3.)l ,RZ(3,2)
D DIMENSION IXX(3,25,IXZ(3,2),IXY(3,25,IYY(3,2),IYZ(3 2) ,IZZ(3,2)
D INTEGER IER,I,RUN,M,N,IA,IDGT
EXCLUDE IA,IDGT,IER,I,RUN,M,NHTZ3
ARRAY MATB(27) LCOGX(3),LCOGY(3),LCOGZ(3),ETHETX(3),ETHETY(3) ETHEZ3
ARRAY CTEX3 CTHETY(3) ,CTHETZ(3) ,THDDOT(3) ,IXXA(3),ERROR3
ARRAY VECTAO (3) ,VECTBO (3) VECTAl (3) ,VECTB1 (3) VECTA2(3) VECTB2(3)

* ARRAY WDX(3) WDY(3),WDZ(5 ,WX(3),WY(3) WZ(3),RBG1(3) ,RAG1(3) THEORY(3)
ARRAY RBG2(~RG()RG (3WH~R3 THETYR(3),THETZR(3) ,EULORY(3)
ARRAY HDX(2),DY(2),HDZ(2)
ARRAY SUMHDX(3),SUMHDY(3),SUMHDZ(3),WKAREA(850)
D DATA MATA/729 *.

INITIAL

* INPUT PARAMETER CONSTANTS
A = 10.0
P = 0.0
W= 2'*PI
IDGT = 4
G=0.0
N=27
M1=1
IA =27
RUN =1

* INPUT JOINT LOCATIONS IN METERS
JXO =0.0
JYO =0.0
JZ0 = 0.0

V..JX1 = 0.0
JYl = 1.0
JZ1 = 0.0
JX2 = 0.0
JY2 = 2.0
JZ2 = 0.0

* INPUT TORQUE CONSTANTS
TOX = 0.0
TOY = 0.0

sITOZ=0.

T1Y = 0.0
T1Z = 0.0
T2Y = 0.0
T2Z = 0.0

*INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS FOR EACH LINK ENDS
L 1:11 = 0.50
L 1,2 = 0.50
L 2,1~ =.50
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L(3,2) = 0.50

INPUT MASS AT LINK ENDS IN KILOGRAMS
MASS1,2 = 2.5

MASS2,1 = 2.5
MASS 22 = 2.5
MASS 3,1 = 2.5
MASS 3,2 =2.5

N INPUT OMEGA AND OMEGA DOT
DO 30 I = 1,3

WX (I) = 0.0WY (I) = 0.0
WZ I= 0.0
WDX(I) = 0.0
WDY(I) = 0.0
WDZ (1) 0.0

30 CONTINUE

* INPUT INITIAL VALUES OF EULER ANGLE THETA AND CONVERT TO RADIANS
ETHETX(1) = 90.0
TXI = ETHETX(1) * DEGRA
ETHETY(1) = 0.0
TYl = ETHETY(1) DEGRA
ETHETZ(1) = 90.0
TZ1 = ETHETZ(1) * DEGRA
ETHETX(2) = 90.0
TX2 = ETHETX(2) * DEGRA
ETHETY(2) = 0.0
TY2= ETHETY(2)* DEGRAETHETZ(2) = 90.0
TZ2 = ETHETZ(2) * DEGRA
ETHETX(3) = 90.0
TX3 = ETHETX(3) * DEGRA
ETHETY(3) = 45.0
TY3 = ETHETY(3) * DEGRA
ETHETZ(3) = 45.0
TZ3 = ETHETZ(3) * DEGRA

INPUT LOCATION OF LINK CENTERS OF GRAVITY
LCOGX(1) = 0.0
Xl = LCOGX(1)
LCOGY(1) = 0.5
Y1 = LCOGY(1)
LCOGZ(1) = 0.0
Zl = LCOGZ(1)
LCOGX(2) = 0.0
X2 = LCOGX(2)
LCOGY(2) = 1.5
Y2 = LCOGY(2)
LCOGZ(2) = 0.0
Z2 = LCOGZ(2)
LCOGX(3) = 0.0
X3 = LCOGX(3)
THERAD = ETHETY(3) * DEGRA
LCOGY(3) = 2.0 + COS(THERAD) * L(3,1)
Y3 = LCOGY(3)
LCOGZ(3) = L(3,1) * SIN(THERAD)
Z3 = LCOGZ(3)

INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWTONS
MASS1 = 5.0
MASS2 = 5.0
MASS3 = 5.0
Wi = MASS1*G
W2 = MASS2*G
W3 = MASS3*G
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* INPUT ACCELERATION1 OF JOINT ZERO
AOX = 0.0
AOY = 0.0
AOZ = 0.0

DERIVATIVE

NOSORT
* INPUT JOINT EQUATIONS

* INITIALIZE MATRIX B TO ZERO
DO 10 I 1,27

MATB(I) = 0.0
10 CONTINUE

* INPUT TORQUE AT JOINTS
T2X = A*SIN (W*TIME +P)

*JOINT ZERO AB =AGi + (WD1 X RB/G1) +Wi X (Wi X RB/Gl)
VECTAO (1) =WDX(1
VECTAO (2) =WDY (1)VECTAO (3) =WDZ (1)
RBG1 (1): JXO - LCOGX(1
RBG1 2 JYO - LCOG(1
RBG1 (3)= JZO - LCOGZ (1

CALL CPROD(VECTAO ,RBG1 ,MIAO ,MJAO ,MKAO)
VECTAO (1) = WX(1
VECTAO (2) = WY (1)
VECTAO (3) = WZ (1)

CALL CPROD (VECTAO ,RBG1 ,MIBO ,MJBO ,MKBO)
VECTBO (1) MIBO
VECTBO (2) = MJBO
VECTBO (3) = MKBO

CALL CPROD(VECTAO,VECTBO,MICO,MJCO,MKCO)

* JOINT ONE EQUATIONS--- AA =AGi + (WD1 X RA/Gi) + Wi X (Wi X RA/Gi)
VECTAl (1) WDX (1)
VECTAl (2 DY(1
VECTAl (3) WDZ (1)
RAGI~j (1: JX1 - LCOgX (1
RAG12 JYl - LCOGY1
RAG (3) = JZ1 - LCOGZ 1)

CALL CPROD(VECTA1 ,RAG1 ,MIA1 ,MJA1 ,MKA1)
VE CTAl (1) WX (1)VECTAl 2 WY (1VECTAl (3) WZ (1)

CALL CPROD (VECTAl ,1.G1 ,MIB1 ,MJB1 ,MKB1)
VECTB1 (1) = IB1
VECTB1 (2) MJB1
VECTB1 (3) MKB1

CALL CPROD (VECTA1,VECTB1,MIC1,MJC1,MKC1)

*AB AG2 + (WD2 X RB/G2) + W2 X (W2 X RB/G2)
CTAl 1) WD (2)

VECTAl (2) WDY(2
VECTAl (3) WDZ (2)
RBG2 (1 =J1 - LCOGX (2)
RB 2(2) J ml - LCOGY(2)
RBG2 (3) = JZ1 - LCOGZ(2)

CALL CPROD (VECTA , RBG2 ,MIA2 ,MJA2 ,MKA2)
VECTAl ()=W(2)

ECTAl 2J WY(2)
VECTAl (3) = WZ (2)

CALL CPROD (VECTAl ,RBG2,MIB2,MJB2,MKB2)
VECTB1 1 =MB
VETE(2= MJB2
VECTB1 (3) MKB2

CALL CPROD (VECTA1,VECTB1,MIC2,MJC2,MKC2)
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*JOINT TWO EQUATIONS
* AA =AG2 +(WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2 (1) = WD X (2)
VECTA2 (2) = WDY (2)
VECTA2 (3) = WDZ (2)
RAG2 ()=JX2 - LCOGX (2)
RAG2 (2) : JY2 - LCOGY (2)
RAG2 (3) = JZ2 - LCOGZ (2)

CALL CPROD (VECTA2,RAG2 ,MIA3 ,MJA3 ,MKA3)
VECTA2(1 X2
VETA 2 WY 2)
VECTA2 (3) WZ 2)

CALL CPROD (VECTA2 ,RAG2 ,MIB3 ,MJB3 ,MKB3)
VE CTB 2 ()= MIB3
VECTB2 (2) = MJB3
VECTB2 (3) = MKB3

CALL CPROD (VECTA2,VECTB2,MIC3,MJC3,MKC3)

* AB =AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)
VECTA2 (1 W WX (3)ETA2 (2) WDY(3
VECTA2 (3) WDZ (3)
RBG3 (1 =X2 - LCOGX (3)
RBG3 (2 N=J2 - LCOGY(3
RBG3 (3) JZ2 - LCOGZ (3)

CALL CPROD (VECTA2 ,RBG3,MIA4,MKA4,MKA4)
VECTA2~2 Y3
VET2 YVECTA2 (3) = WZ(3

CALL CPROD (VECTA2 ,RBG3 ,MIB4 ,MJB4 ,MKB4)
VECTB2 (1) = MIB4
VE CTB2 (2) MJB4
VECTB2 (3) = MXB4

CALL CPROD (VECTA2,VECTB2,MIC4,MJC4,MKC4)

* SUM OF MOMENTS EQUATIONS
*CONVERT EULER ANGLES FROM DEGREES TO RADIANS

DO 40 I = 1,3
THETXR (I) = ETHET I ER
THETYR I) = ETET(I* DEGRA
THETZR I) = ETHETZ (I) DEGRA

*COMPUTE HX DOT,HY DOT,HZ DOT
RX I, LI1 COS(THETXR(I )
RX I:!2 =L(!I,2))* COS(THETXR()

RY 1:1 =-L(I,1) * COS(THETYR(I )
RY 12 =L(I,2) * COS(THETYR(I

RZ I 1 -L(I,1) * COS(THETZR(I )
RZ I,2 L 1(,2) *COS THETZR(I)

lXX (I1MS(, RY I1l RY1,1 ))+(RZ(1,1l*RZ(1,1))
XXI 2=MAS S12 ~ RY 1,2 *Ry (1,2) +(RZ(1,2)*RZ(1,2))

I XZ(I 1=MASSI,1 RzI1 R(,
IXZ (1,2 =KASS(1,2 *RZ t:,2 *RX'I(1,2)
IXYIj =MASS(I,1 RXI1 *yI )
IXY (1,2 =MASS 1,2 *RX 1, Yy (1,2)1

HDX(2) =WDX21*IXX I,)-WDZ I)*IXZI,1)-WDY(I*IYI,21
IYY Ii) HASS1,1 * (RX(I,11)*RX( 1)) +(R(1)*ZI,))

IY I ) MASS (1, 2 * (RXR( 2) *RX (I2) + (RZ(1,2)*RZ(1,2)
IYZ (1,1 H A SS(1,1 *RY(I,1 5 RZ(I ,1
IYZ (1,2) = MASS (I 2 *RY(I,2) RZ(I,2)

HDY 1) = WDY (iIY11 -flWD(I*y(,1-WZI)*Z(,)
HDY(2) =DYI *IYY~ ,2-WXI)*y (12 WDZ I) *IYZ(12

IZZ (1,1) = MASS(1,1 * ( RX (1,1) *RX l11) (Y11) *RY(I,)
IZZ (1,2) = MASS (1 2 * (RX(I,2)*RX(I,2) + (RY(12)*RY(I,2I)

HDZ (1) = WDZ Ij ,) -WDX flIXZ I(,1) -WDY(I) *IYZ (14)
HDZ(2) =WDZI *IZZ I,2)WDXI IXZ(I,2)-WDY I *IYZ 1,2)

SUMHDX(1) =HDX(1) + HDX(2)
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SUMHDY () = HDY(1) + HDY (2
SUMHDZ(I) HDZ(1)+ HDZ(2)

40 CONTINUE

* TEST TO SEE WHICH CONSTRAINT IS IN EFFECT 1,2 OR 3
IF RUN .E? 1) GO TO 1
IF RUN .EQ. 2 GO TO 2
IF RUN EQ. 3 GO TO 3

* INITIAIZE MATRIX ACCORDING TO CONSTRAINT

1 DO 60 1 = 1,18
MATA(I,I) = 1.0

60 CONTINUE
GO TO 4

2 DO 70 I =1,9
MATA(I,I) = 1.0

70 CONTINUE
GO TO 7

* ENTER CONSTANTS INTO MATRIX A
* LINK ONE
* SUM OF FORCES IN THE X DIRECTION
3 MATA(1,1) = 1.0

MATA (1,4) = MASS1
MATA (1,10) -1.0

SUM OF FORCES IN Y DIRECTION
MATA2 fl,2= 1.0MATA 25 = MASS1
MATA 2,11) = -1.0

SUM OF FORCES IN Z DIRECTION
MATA (3,3) 1.0
MATA (3,6 MASSI
MATA(3,12) -1.0

SUM OF FORCES LINK ONE EQUAL

MATB(3) = -Wl

EQUATIONS AT JOINT ZERO

IN THE X DIRECTION
MATA(4,4) = 1.0
NATA (4,8 = RBG1(3)
MATA (4,9 = -RBGI(2)

MATB(4) = AOX - MICO

IN THE Y DIRECTION
MATA(5,5) = 1.0
MATA (5,7 = -RBG1(3)
MATA (5,9 RBGI(1)

MATB(5) = AOY - MJCO

* IN THE Z DIRECTION
HATA(66 1.
MATA ,7 = RBG1(2)
ATA 6,8 -RBG1(1)

MATB(6) = AOZ - MKCO

* SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS

MATA(7,) = RBG1(3)
MATA 7,3 = -RBGI(2)
MATA 7,7) = -(IXX (,1) + IXX(1 2))
MATA 7 8 = IXY(1,15 + IXY(1,25
MATA 7,9 = IXZ(1,1) + IXZ (1,2)
MATA 7,11) = -RAG1(3)
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MATA(7,12) = RAG1(2)

* MATB(7) = TiX - TOX

MATA(8,1 = RBG1(3)
MATA 8!) == RG1(1)
MATA8 8,==IX (11) + IXY(1,2)
MATA 8,8) = -(IYY( 1) IYY(1 2))

*MATA 8,9) = IYZ( 1 + IYZ( , 25
* NMATA 8,10) RAG1(3

MATA 8,12)= -RAGI(1)

MATB(8) = TlY - TOY

MATA(9,1) =RBG1(2)
MATA 9,)=-RBG1(1)
MATA 9,) IXZ(1)+IZ(,2
MAT 9,8) = iYZ(11 + IYZ (1,2)
MATA(9,9) --(Iz(,1 + IZZ(1,2))
MATA9 9,10) = -RAG1(2)
MATA 9,11) = RAG1(1)

LIKTOMATB(9) = TZ - TOZ

* SUM OF FORCES IN X DIRECTION
7 MATA(10 10) = 1.0

MATA(10..13) = MASS2
MAT(1019)= -1.0

** SUM OF FORCES IN THE Y DIRECTION

MATA 11,14 MASS2
MATA 11,20 =-1.0

* SUM OF FORCES IN THE Z DIRECTION
IATA (2,12) = 1.0
MATA (12,15 = MASS2
MATA (12,21) = -1.0

* SUM OF FORCES LINK TWO EQUAL
MATB(12) = -W2

* EQUATIONS AT JOINT ONE
* IN THE X DIRECTION

MATA 134 1.0MATA 138 RAG1(3)
MATA 13,9) RAG1( 2)
MATA 13,13) = 1.0
MATA 13,17) = RBG2(3)
MATA113,18) = -RBG2(2)

MATB(13) = MICi - MIC2

* IN THE Y DIRECTION
ATA 1,)--.

MATA 14,7) = RAG(3)
MATA 1 4,9) -RAG1(1)
MATA 14,14) = 1.0
MATA 14,16) = -RBG2(3)
MATA 14,181 = RBG2(1)

MATB(14) =MJC1 - MJC2

* IN THE Z DIRECTION
MATA (1,)=-1.0
MATA (5,7) = -RAG1(2)
MATA (15,8) = RAG1(1)
MATA (15,15) =1.0



MATA (15,16) RBG2(2)

* MATA (15 ,17)= -RBG2(1)

MATB(15) = MKC1 - MKC2

* SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X,Y,Z DIRECTIONS
MATA(1,1 RBG2(3)
MATA 16,12) -RBG2 (2)
MATA(16,16) -(IXX (2 1) + IXX(2 2))
MATA 16,17) XY 2,1 + IXY(22
MATA 16,218) IXZ 2,1 'I+IZ22
MATA 16,20 -RAG2(3)
MATA 16 21 RAG2(2)
MATB16 = -TlX + T2X
IF(RUN .EQ. 2) GO TO 11

MATA (17,1 -RBG2(3)
MATA (7,12) RBG2(1)
MATA (17,16 IXY(2,1) + IXY(2,2)
MATA ( 7) -(IYY(2 1) + IYY(2 2))
MATA (1,8 IYZ(2 1S + IYZ(2,2
MATA 17,19j RAG2(3
MATA 17,21 =-RAG2(l)

MATB(17) = -T1Y + T2Y

MATA (110 RBG2 (2)
- MATA (18,:11) - RBG2(1

MATA (18,16) IXZ (2,1) + IXZ 2,2)
MATA (18,17) IYZ (2,1) +- IYZ (2 ,2)
MATA (18,18) -(IZZ (2,1) + IZZ(2,2))
MATA 18,19 =-RAG2 (2)
MATA 18,20 RAG2(1)

MATB(18) = -T1Z + T2Z

IF (RUN .EQ. 3) GO TO 4
11 MATA(17,17) = 1.0

MATA(18,18) =1.0

* * LINK THREE
* SUM OF FORCES IN THE X DIRECTION

4 MATA(19 19) =1.0
MATA(19,22) = MASS3

* SUM OF FORCES IN THE Y DIRECTION
MATA(20,20) =1.0
MATA (20,23) =MASS3

* SUM OF FORCES IN THE Z DIRECTION
MATA (21 ,21) = 1.0
MATA (21,24) = MASS3

I4ATB(21) = -W3

* EQUATIONS AT JOINT TWO
* IN THE X DIRECTION

MATA( (221) -.MATA (22,17) -RAG2(3)
MATA (22,18) RAG2(2)
MATA (22,22) 1.0
MATA (22,26) RBG3(3)
MATA (22,27) -RBG3(2)

MATB(22) = MIC3 - MIC4

* IN THE Y DIRECTION
MATA (23,14) = -1.0
MATA (23,16) =RAG2(3)
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* MAA (2,18)= -RAG2(l)
MATA(23 =3 1.0
MATA (23,25) = -RBG3(3)

4 MATA (23,27) = RBG3(l)

MATB(23) = MJC3 - MJC4

* IN THE Z DIRECTION
MATA 24,5 =-.
MATA 24,16 = RAiG2(2)

MATA 24,24 =1.0
MATA 24,25 =RBG3(2)
MATA124,26 =-RBG3(1)

MATB(24) = MKC3 - MKC4

* SUM OF MOMENTS EQUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
MATA 2 5,20 = RBG3(3)
MATA 25 ,21) = -RBG3 (2)
MATA 25,25) = -(IXX (3 1) + IXX(3 2))
MATA 25,26 = IXY (3,1 S+IXY(3,
MATA 25 27 = IXZ' 3,1 +IZ3f
MATB 125S = _ T2X
IF(RUN .EQ. 1 .OR. RUN .EQ. 2) GO TO 12

MATA (26,19) =-RBG3(3)
MATA 262)=RBG3(1)
MATA (26 ,25) IXY(3,1) + IXY(3,2)
MATA (26,26) -(IYY(3 1) + IYY(3 2))
MATA (26,27) IYZ(3,1S + IYZ(3,2j

MATB(26) =-T2Y

MATA (27,19) = RBG3(2)
MATA (27,20) = -RBG3(1)
MATA (27,25)= IXZ (3,1) + IXZ (3,2)
MATA (27,26) = I-iZ(3 1) + IYZ(3,2)
MATA (27,27) = -(IZZ(3,1) + IZZ(3,2))

MATB(27) = - T2Z

IF (RUN .EQ. 3) GO TO 13
12 MATA(26 26) = 1.0

MATA(27, 27) = 1.0

*CALL EQUATION SOLVER PROGRAM FROM IMSL
13 CALL LEQT2F(MATA,M,N,IA,MATB,IDGT,WKAREA,IER)

IF (IER .NE. 0) CALL ENDJOB

*FIND LCOGX,LCOGY,LCOGZ,THETA VALUES,WX,WY,WZ
IF(RUN .EQ 1) GO TO 6
IF (RUN %E. 2) GO TO 9

* LINK ONE
AX1 = MATB(4)
VELX1 INTGRL(0,AX1)
LCOGX1 =INTGRL(X1,VELX1)
LCOGX(1) = LCOGX1
AY1 = MATB(5)
VELY1 INTGRL(0,AY1)
LCOGY1 = INTGRL(Y1,VELY1)
LCOGY(1) = LCOGY1
AZ1 = MATB(6)
VELZ1 INTGRL(O,AZ1)
LCOGZ1 =INTGRL(Z1,VELZ1)
LCOGZ(1) = LCOGZ1
WD1X =MATB(7)
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WIX = INTGRL(0,WDlX)

JXO= LCOGX(1) - L(1,1) CsT
WDX(l) =WD1X
wx(1) =wix
CTHETX(1) = THEMRJ * RADEG
ETHETY(1) = CTHETX(1)
WD1Y = MATB(8)
WlY = INTGRL(0,WDlY)
THEM~ = INTGR'L(0.,W1Y)
JYO = LCOGY(l)-i1) *C0S(THEXR1)
WDY(l) =WDiY
WY(1) =wiY
CTH'ETY(1) = TH-EM~ * RADEG
WDlZ =MATB(9)
W1Z INTGRL(0,WD-IZ)
THEZR1 = INTGRL(0.,W1Z)
WDZ(1) = WD1Z
Wz(i) = WIZ
CTHETZ(i) = THEMR * RADEG
ETHETZ(i) = 90.0 - CTHETX(l)
ETHEMi = ETHETZ(1) * DEGRA
JZO = LCOGZ(i) - L(l,1) * COS(ETHEZ1)

* LINK TWO
9 AX2 = MATB(13)

VELX2 = INTGRL (0,AX2)
LC0GX2 = INTGRL(X2,VELX2)
LCOGX(2) = LCOGX2
AY2 = MATB(14)
VELY2 =INTGRL(0,AY2)
LCOGY2 =INTGRL(Y2,VELY2)
LCOGY(2) = LC0GY2
AZ2 = MATB(15)
VELZ2 =INTGRL,(0,AZ2)
LCOGZ2 =INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2
WD2X =MATB(16)
W2X =INTGRL(0,WD2X)
THEMR = INTGRL(TY2 W2X)
MX] = LCOGX(2) - L(2,1) * COS(TX2)
WDX(2) WD2X
WX(2) =W2X
CTHETX(2) = THEMR * RADEG
ETHETY(2) = CTHETX(2)
WD2Y =MATB(17)
W2Y =INTRGL(0,WD2Y)
THEMR = INTGRL(0.,W2Y)
JYl = LCOGY(2) - L(2,i) * COS(THEXR2)
WDY(2) =WD2Y
WY(2) =W2Y
CTHETY(2) =THEYR2 * RADEG
WD2Z =MATB(18)
W2Z =INTGRL(O,WD2Z)
THEMR = INTGRL(0.,W2Z)
WDZ(2) = WD2Z
WZ(2) = W2Z
CTHETZ (2) = THEMR * RADEG
ETHETZ(2) = 90.0 - CTHETX(2)
ETHEZ2 = ETHETZ(2) * DEGRA
JZi = LCOGZ(2) - L(2,1) * COS(ETHEZ2)

* LINK THREE
-6 AX3 = MATB(22)

VELX3 =INTGRL(0.,AX3)
LCOGX3 =INTGRL(X3,VELX3)
LCOGX(3) = LCOGX3
AY3 = MATB(23)
VELY3 =INTGRL(0. ,AY3)
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LCCGY3 = INTGRL(Y3,VELY3)
LCOGY(3) = LCOGY3
AZ3 = MATB(24)
VELZ3 =INTGRL(O.,AZ3)
LCOGZ3 =INTGRL(Z3,VELZ3)
LCOGZ(3) = LCOGZ3
WD3X =MATB(25)
W3X =INTGRL(0.,WD3X)
THEXR3 =INTGRL(TY3,W3X)
JX2 = LCOGX(3) - L(3,l) * COS(TX3)
WDX(3) =WD3X
WX(3) =W3X
CTHETX(3) = THEXR3 * RADEG
ETHETY(3) =CTHETX(3)
WD3Y =MATB(26)
W3Y =INTGRL(0.,WD3Y)
THEYR3 = INTGRL(. ,W3Y)JY2 =LCOGY(3) - L(3,1) * COS(THEXR3)
WDY(3) =WD3Y
WY(3) =W3Y
CTHETY(3) =THEYR3 * RADEG
WD3Z =MATB(27)
W3Z =INTGRL(O.,WD3Z)

* THEZR3 = INTGRL(0.,W3Z)
WDZ(3) = WD3Z
WZ(3) = W3Z

* CTHETZ(3) = THEZR3 * RADEG
ETHETZ(3) = 90.0 - CTHETX(3)
ETH-EZ3 = ETHETZ(3) * DEGRA
JZ2 = LCOGZ(3) - L(3,1) * COS(ETHEZ3)

* DYNAMI C

+i PI/4.
EULORY(3) =THEORY(3) * RADEG
TH-DDOT(3) =T2X/IXXA(3)
ERROR(3) =((ABS(EULORY(3)-ETHETY(3)))/ 81 .4/6)*100.

END
STOP
FORTRAN

* SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTOR

SUBROUTINE CPROD(VECTA,VECTB,MI ,MJ,MK)
IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3) ,VECTB(3)
MI = VECTA 2) VECTB (3) - VECTA (3) VECTB (2)
MJ = VECTA (3) VECTB (1) - VECTA (1) VECTB(3
MK = VECTA (1) VECTB (2) - VECTA (2) VECTB (1

RETURN
END
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APPENDIX B

SIMULATION PROGRAM'% FOR MOVEMENT OF LINK TWO AND
THREE

TERMINAL
METHOD ADAMS
PRINT .O3,TIX,TORY1X,T2X,TORY2X,ERRT2X,ERRTlX,ETHETY(2-3)
CONTROL FINTIM =3.0, DELMAX =.01, DELPRT = .03
SAVE .O1,ERRT2X ERRTlXTORYlX,TORY2X,T1X,T2X,ETHETY(2),ETHETY(3)
GRAPH(DE=TEK618B TIME,T1X,TORYIX
GRAPH(DE=TEK618 TIME,T2X,TORY2X
GRAPH(DE=TEK618 TIME,ERRT2X
GRAPH DE=TEK618 TIME,ERRTlX
GRAPH(DE=TEK6181 TIME,ETHETY(3),ETHETY(2)
D DIMENSION MATA(27 27) MASS(3,2),L(3,2),RX(3,2),RY3 ( ,2,RZ(3 ,2)
D DIMENSION IXX(3,2S,IXZ(3,2),IXY(3,2),IYY(3,2),IYZ (3,2),IZZ(3,2)
D INTEGER IER,I,RtJN,M,N,IA,IDGT
EXCLUDE IA,IDGT,IER,I,RUNI,M,N
ARRAY MATB(27) LCOGX(3),LCOGY(3),LCOGZ(3),ETHETX(3),ETHETY(3),ETHETZ(3)
ARRAY CTHETX 3 ,CTHETY( 3),CTHETZ 3ARRAY VECTAO 3 :VECTBO(3 3 E l3VCB()VET23,ET23
ARRAY WDX(3) WDY(3),WDZ(35,WX(3) WY(3) WZ(3),RBG1(3),RAG1(3)
ARRAY RBG2(3$ ,RAG2(3) ,RBG3(3) ,THETXR(35 ,THETYR (3) ,THETZR(3)
ARRAY SUMIHDX(3),SUMHDY(3),SUMHDZ(3),HDX(2),HDY(2),HDZ(2),WKAREA(850)
D DATA MATA/729 * 0./

INITIAL

* INPUT PARAMETER CONSTANTS
A =2.0

P =0.0
W 2'*PI
IDGT = 4
G0 .0
N= 27

IA =27
RUN =2

* INPUT JOINT LOCATIONS IN METERS
JXO = 0.0
370 = 0.0
JzO = 0.0
JX1 = 0.0
JYl = 1.0
JZ1 = 0.0
JX2 = 0.0
JY2 = 2.0
JZ2 = 0.0

* INPUT TORQUE CONSTANTS
TOX =0.0
TOY = 0.0
TCZ = 0.0
Tly = 0.0

T7= 0.0.

TzZ = 0.0
72.- = 0.0J

*INPUT DISTANCE FROM CENTER OF LINK TO CENTER OF MASS FOR EACH LINK ENDS

Liii)= D50



*INPUT MASS AT LINK ENDS IN KILOGRAMS

MASS 11, = 2.5
MASS1,2= 2.5

MASS12:1 = 2.5
MASS 2,2 = 2.5
MASS 3,1 = 2.5
MASS 3,2 = 2.5

* * INPUT OMEGA AND OMEGA DOT
DO 30 I = 1,3

WX~l 8I=00

WZ 1I 0.0
WDX () 0.0
WDY 1I 0.0
WDZ 1I 0.0

30 CONTINUE

* INPUT INITIAL VALUES OF EULER ANGLE THETA AND CONVERT TO RADIANS
ETHETX(1) = 90.0
TX1 = ETHETX(1) * DEGRA
ETHETY(l) = 0.0
TYl = ETHETY(1) * DEGRA
ETHETZ(1) = 90.0
TZ1 = ETHETZ(1) * DEGRA
ETHETX(2) = 90.0
TX2 = ETHETX(2) * DEGRA
ETHETY(2) = 0.0
TY2= ETHETY(2) * DEGRA
ETHETZ(2) = 90.0
TZ2 = ETHETZ(2) *DEGRA
ETHETX(3) = 90.0
TX3 = ETHETX () *DEGRA
ETHETY(3) = 45.0
TY3 =ETHETY(3) *DEGRA
ETHETZ(3) =45.0
TZ3 = ETHETZ(3) *DEGRA

* INPUT LOCATION OF LINK CENTERS OF GRAVITY
LCOGX(l) = 0.0
Xl =LCOGX(l)
LCOGY(l) = 0.5
Yl LCOGY(l)
LCOGZ(1) = 0.0
Zi = LCOGZ(1)
LCOGX(2) = 0.0
X2 = LCOGX(2)
LCOGY(2) = 1.5
Y2 = LCOGY(2)
LCOGZ(2) = 0.0
Z2 = LCOGZ(2)
LCOGX(3) = 0.0
X3 = LCOGX(3)
THERAD =ETHETY(3) *DEGRA

* LCOGY(3 = 2.0 +COS(THERAD) *L(3,l)

Y3 = LCOGY(3)
*LCOGZ(3) =L(3,1) *SIN(THERAD)

Z3 = LCOGZ(3)

*INPUT MASS OF EACH LINK IN KG AND COMPUTE WEIGHTS IN NEWT.DNS
MASSI = 5.0
11ASS2 = 5.0
MASS3 = 5.0
Wl = MASSI4 G
W2 =MAS52*G
W3 =MAS53*G



* INPUT ACCELERATION OF JOINT ZERO
AOX = 0.0
AQY =0.0
AOZ = 0.0

N DERIVATIVE

NOOTINPUT JOINT EQUATIONS

* INITIALIZE MATRIX B TO ZERO
DO 10 I 1,27

MATB(I) = 0.0
10 CONTINUE

* INPUT TORQUE AT JOINTS
T2X = -A SIN (W*TIME -P)
TlX = A*SIN (W*TIME +P)

*JOINT ZERO AB =AGI + (WDI X RB/GI) +Wl X (Wl X RB/G:'
VECTAO (1) WDXl

5-. VECTAO (2~ WDY~ l
VECTAO (3 WDZ(1)
RBG1 (1) JAU - LCOGXA(l)
RBG1 (2) JYO - LC0071 2)
RBG1 (3 =JZO - LCOGZ(lb

CALL CPROD(VECTAO ,RBGIMIAO ,MJAOMEAG)
VECTAO(1) = WX(1)
VECTAO('21 WY(l)

CALL CPROD(VECTAC FBGl,MIBC,MJB0,MYBD
'VECTBO~j? = MISO
VECTBJ 2 = .IJBC
VEC:TBO(3) = MKB:

CALL CPROI)(VECTA-DVECT BI-, MIC 1 ", 1 MY>.-)

* JOINT ONE EQUATICIIS --- AA = AGl K E X RA X W1 X~ A
VECTA~Il lf= X

I ''1"X - Li::

CALL CPO L VE PA; ',IA M,:A. 11K
E- 7 A 1

VE .'A'. W-
-ALL -FFPI EA PA~j. 4:. 4 FM '!E

iy5

-ALL -PrC VE -7A .'E 7F. ~ ~
AB = AC,- W: E. *.



- ~ , -. r .Fr

CALL CPROD (VECTAl ,VECTB1 ,MIC2,MJC2,MKC2)

*JOINT TWO EQUATIONS
* AA =AG2 + (WD2 X RA/G2) + W2 X (W2 X RA/G2)

VECTA2 (1) = WDX (2)
VECTA2 (2) = WDY(2
VECTA2 (3) = WDZ (2)

* RA2 () =JX2 - LCOGX (2)
RAG2 (2) JY2 -LCG(2

* RPAG2 (3) JZ2 - LCOGZ (2)
CALL CPROD (VECTA2 ,RAG2,MIA3,MJA3,MKA3)

VECTA2 ~ X2
VECTA2 3$= WZ 2

CALL CPROD (VECTA2,RAG2,MIB3,MJB3,MKB3)
VECTB2 ()= MIB3VET2 (2 = MJB3
VECTB2 (3) = MKB3

CALL CPROD (VECTA2 ,VECTB2,MIC3,MJC3,MKC3)

* AB =AG3 + (WD3 X RB/G3) + W3 X (W3 X RB/G3)
VECTA2 (1) = WDX (3)
VECTA2 (2) = WDY(3
VECTA2 (3) = WDZ (3)
RBG3 (1 = JX2 - LCOGX (3
RBG3(2) = JY2 - LCOGY(3
RBG3 (3) = JZ2 - LCOGZ (3)

CALL CPROD (VECTA2 ,RBG3,MIA4,MKA4,MKA4)
VE CTA2 (1 WX 3
VECTA2 =WY(

VECTA2 3 WZ(3
CALL CPROD (VECTA2,RBG3,MIB4,MJB4,MKB4)

(1)~ll = MIB4
VECTB2 (2) = MJB4
V.ECTB2 (3)= MKB4

CALL CPROD (VECTA2,VECTB2,MIC4,MJC4,MKC4)

5Tj1M CF MOMENTS Er1UATIONS
* JONVl'EPT EULEA ANGLES FROM DEGREES TO RADIANS

DC: 4,': 1.3
THET;r*:R(I) =ETHETX (I) DEGRA
THETYR(I) = ETHETY (I) DEGRA
THETZRIl) = ETHETZ (I) DEGRA

* IMPUTE HX H DOT X,HY,H DOT Y HZ H DOT Z
FX 1.1 = L(I,1) COS(THETXR(I
PX 1,2 L(I,2) *COS(THETXR(I)"
P711)l -L(I,1) *COS(THETYR(I

PY(1,2) =L(1,2) *COS(THETYR(I)
PZ(I 1) =-LUll) *COS(THETZR(I

PZ 1,2) =L(I,2) COS (THETZR(I)i

:Xi =MASS(I,2)* RY~ 12)*R 1,2 +RZ 1,2 *RZ~ 1,2

Ixz, I ",=MASS(I1) PZIT,1L) *RX(I,1XZ ' l.MA S 1.2) Z (i,2) * RX(I,2)IXYA 1 =MASSA.') RX!I,) RYP(11
IXY( 2, =MASS : '2 RX 1X. 2) P, P( L,2)

HEX' I WLXi I~( I "Z1 1) -WEZ(I IXZ(I, l)-WDY(I) *I Y1
H:X' 2, WZ X( *IXX(' 2i-WTC~l)IXZ12 D 1*X '

7-YY I MASS' I 1 XII 1 )RX(1Il)) + (RZ)1,1 )*RZ 1.1)')2Y~ : MAS 2* X(1 2)RX(I,2)) +(RZI,2)*RZ(I,2)))

:7 : 1AI-S Y 1 2( 1Z ,I)

P:.' F:. FX' 1. -D( 1 ;*I7 IC

-. 2z 2 PY~t X 2) -D I7( L7 :2



SUMHDXI HDX1 + HDX(2SUMHDY I HDY 1 + HDY 2
e.SUMHDN(I =HDZ(I + HDZ(240 CONTINUE

* TEST TO SEE WHICH CONSTRAINT IS IN EFFECT 1,2 OR 3
IF RUN .EQ. 1 GO TOI
IF (RUN .EQ. 2) GO TO 2
IF (RUN EQ. 3) GO TO 3

* INITIAIIZE MATRIX ACCORDING TO CONSTRAINT
1 DO 60 1 = 1,18

MATA(I,I) = 1.0
60 CONTINUE

GO TO 4
2 DO701=1,9

MATA(I,I) = 1.0
70 CONTINUE

GO TO 7

* ENTER CONSTANTS INTO MATRIX A
* LINK ONE
* SUM OF FORCES IN THE X DIRECTION
3 MATA(1,1) = 1.0

MATA (,4) = MASS1
MATA (1,10) = -1.0

SUM OF FORCES IN Y DIRECTION
MATA(2,2 = 1.0
MATA (2,5 = MASSI
MATA (2,11) = -1.0

SUM OF FORCES IN Z DIRECTION
MATA (3,3)= 1.0
MATA (3,6 = MASS1
MATA(3,12) = -1.0

SUM OF FORCES LINK ONE EQUAL
MATB(3) = -Wi

EQUATIONS AT JOINT ZERO
IN THE X DIRECTION

MATA(4,4)= 1.0
MATA 44,8 RBG1(3)
MATA (4,9) -RBGI(2)

MATB(4)= AOX - MICO

IN THE Y DIRECTION
MATA(5,5) = 1.0
MATA (5,7 = -RBG1(3)MATA(5,9, BG1(1)

MATB(5) = AOY - MJCO

IN THE Z DIRECTION
MATA6 (66 = 1.0
MATA 6,7 = RBGI(2)
MATA 6,8 = -RBGI(l)

MATB(6) = AOZ - MKCO

SUM OF MOMENTS EQUATIONS FOR LINK ONE IN THE X,Y,Z DIRECTIONS

-~MATA (7,2) - RBG1(3)
MATA 7,3 = -RBG1(2)
MATA 7,7 = -(IXX (1 1) + IXX(1 2))
MATA 7,8 = IXY( 1 + IXY (1,2
MATA 7,9 = IXZ (1,1 + IXZ(,2

--- I

a'
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MATA(7,11) = -RAG1(3)
MAT(7,2)= RAG1(2)

MATB(7 = TiX - TOX

MATA( 8,) g-BG1(3)
MATA 8,3) == RBM()
HATA 8:7) = IXY(1,1)1+ IXY(1,2)
MATA 8,8) = -(IYY( 1 ) + IYY(1 2))
MATA 8,9) = IYz(1,1 S+ IYZ(1,2
MATA 8,10) RAG1(f)
MATA 8,12)= -RAG1(1)

MATB(8) = T1Y - TOY

MATA(9,1) : RBG1(2)
MATA 92 -RBG1(1)
MATA 9 ,7) == IXZ (1,1) + IXZ(1,2)MATA 9,8) = IYZ (1,1) + IYZ(1,2
MATA 9,9) = - (,iZ(1,1) + Izz(1,2))
MATA 9,10) -RAG1(2)
HATA 9,11)= RAG1(1)

MATB(9) =T1Z - TOZ

*LINK TWO
* SUM OF FORCES IN X DIRECTION

7 MATA(1O 10) = 1.0
MATA (10,13) = MASS2
MATA(1O,19) = -1.0

* SUM OF FORCES IN THE Y DIRECTION
M.ATA (11 1.0MATA (11,14) MASS2
MATA (11,20) -1.0

* SUM OF FORCES IN THE Z DIRECTION
MATA (1,12 = 1.0
MATA 12,15) = MASS2
MATA (12,21) = -1.0

* SUM OF FORCES LINK TWO EQUAL
MATB(12) =-W2

* EQUATIONS AT JOINT ONE
* IN THE X DIRECTION

MATA 13,4 = -1.0
MATA 13,8) = -RAG1(3)
MATA 13,9) = RAG1(2)

MATA13,3) 1.0
MATA 13,17) RBG2(3)
MATA 13,18) = -RBG2(2)

MATB(13) = MICi - MIC2

* IN THE Y DIRECTION
MAT 145) -1.0MATA 14,7) iA R1(3)
MATA 14,9) -RAG1(1)
MATA 14,14) 1.0
MATA 14,16 =-RBG2(3)
MATA114,18, RBG2(l)

MATB(14) = MJC1 - MJC2

* IN THE Z DIRECTION
MATA (15,6) = -1.0
MATA 15,7 =-RAG1(2)
MATA 15,8 = RAG1(l)

7 -



MATA(15,15) = 1.0
MATA (15,16) =RBG2(2)
MATA (15,17) = _-RBG2(1)

MATB(15) = MKC1 - MKC2

* SUM OF MOMENTS EQUATIONS FOR LINK TWO IN THE X,Y,Z DIRECTIONS
MATA(16,11) RBG2(3)
MAT A 112 -RBG2(2)
MATA(16,16 --(IXX(2 1) +IXX(2 2))

AT16,1 7 IXZ 2,1 + (2ll,2SMATA '16,17 IXY 2,1 + IXZ(2 2
MATA 16,20 -RAG2 (3)
MATA 16 211 RAG2( 2)
MATB 16S = -TiX + T2X
IF(RUN .EQ. 2) GO TO 11

MIATA (17,10 -RBG2(3
MAT 171 B2(1)
MATA (17,16 =I(21) + IXY(2,2)
MAT 71 -(IYY(2 1) + IYY(2 2))
MATA 17,18 = IYZ(2,15 + IYZ(2,25
MATA 17,1 RAG2(3)
MATA 17,21 =-RAG2(1)

MATB(17) =-T1Y + T2Y

MATA 1,1 RBG2(2)
MATA 18,11?= -RBG2(1)
MATA 116) = 1XZ (2,1) + IXZ (2,2)
MATA(18,17 = IYZ (2,1) + IYZ (2,2)
MATA 1,8 = -(IZZ(2 1) + IZZ(2,2))
MATA 18,19 = -RAG2(2S
MATA 18,20 = RAG2(1)

MATB(18) = - T1Z + T2Z

IF (RUN .EQ. 3) GO TO 4
11 MATA(17,17) 1.0

MATA(18 1) = 1.0

* LINK THREE
* SUM OF FORCES IN THE X DIRECTION

4 MATA(19 19) = 1.0
MATA(19,22) = MASS3

* SUM OF FORCES IN THE Y DIRECTION
MATA (20,20) = 1.0
MATA (20,23) = MASS 3

* SUM OF FORCES IN THE Z DIRECTION
MATA (21,21) = 1.0
MATA (21,24) = MASS3

MATE (21 -W3
* EUATIONS AT JOINT TWO

* IN THE X DIRECTION
* 1 ~~MATA(2,3 =-.

MATA 221 RAG2(3)
MATA122,18 RAG2( 2
MATA 22,22 =1.0
MATA 22,26 =RBG3(3)
MATA 22,27 = -RBG3(2)

MATB(22) = MIC3 - MICO4

* IN THE Y DIRECTION
MATA (23,14) = -1.0
MATA (23,16) = RAG2(3)



A(WA' ,23) 1.0
MATA (23,25) = -RBG3(3)
MATA (23,27) = RBG3(1)

MATB(23) = MJC3 - MJC4

* IN THE Z DIRECTION
MATA(24,15 =-1.0
MATA 24,16 =-RAG2(2)

MATA 24,17 =RAG2(1)
MATA 24,24 =1.0
MATA 24,25 =RBG3(2)
MATAi 24,26 =-RBG3(l)

M4ATB(24) =MKC3 - MKC4

* StUM OF MOMENT EOUATIONS FOR LINK THREE IN THE X,Y,Z DIRECTIONS
MATA 25,20)U= RBG3(3)

MAA 25,i = -RBG3 2)
MATA2,5 = -(Ixx (3 1) + IXX(3 2))
MATA(25,26 = IXY (3,1 + IXY (3,2~
MATA 25 27 = IXZ (3,1) + IXZ (3,2)
MATB 25S T2X
IF(RUN .EQ. 1 .OR. RUN .EQ. 2) GO TO 12

MATA (261 -RBG3(3)
MAA(62 = RBG3(1)
MATA (26,25 = IXY(3,1) + IXY(3,2)
MATA (26,26 = -(IYY(3 1) + IYY(3 2))
MATA(26,27 = IYZ(3,1S + IYZ(3,25

MATB(26) -T2Y

MATA 27,19) = RBG3(2)
MAT 2720 = -RBG3(1)

MATA 27,25 IXZ(3,1) + IXZ (3 2)MATA 2,26) IYZ(3,N1 + IYZ0(.2
M4ATA 27,27) -(IZZ(3,1) + IZZ(3,2))

MATB(27) - T2Z

IF (RUN .EQ. 3) GO TO 13
12 MATA(26.26) =1.0

MATA(27,27) = 1.0

- CALL EQUATION SOLVER PROGRAM FROM IMSL
13 CALL LE)T2F(MATA,M,N,IAMATB.IDGT,WKAREA,IER)

d IF (IE§ .NE. 0) CALL ENDJOB

*FIND L,:OGX,LCOGYLCOGZTHETA VALLJES,WX,WY WZ
IF(RUN .EQ. 1) GO TO 6
IF (RUN EQ. 2) GO TO 9

LINK ONE
AX1 MATB(4)
VELXI =INTR;L ) AXi,
LCOGX 1 1 11T'R X! , ELX1
LC-OGX I1 L ") X
A71 = MAIW ',

VF L'. I- P -1
P- F "'Y
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Wl INTGRL(0,WDlX)
THEXRI = INTGRL(TY1 ,WIXICST1
JXO= LCOGX(3.) - L(111) cST1
WDX(1) =WD1X
wx(1) =wix

CTHIETX(l) = THEMR * RADEG
ETHETY(1) = CTHETX(1)
WD1Y =MATB(8)
W1Y INTGRL(O,WDlY)
THEM~ = INTGRL(O i wif Y)THX1
JYG LCOGY(1) -L1i O(HX1
WDY(l) =WDlY
WY(i) =WiY

CTHETY(i) = THEM~ * RADEG
WD1Z =MATB(9)
WIZ INTGRL(0,WDlZ)
THEMR = INTGRL(0.,WlZ)
WDZ(l) = WDlZ
WZ(i) =WIZ
CTHETZ (1) = THEMR * RADEG
ETHETZ(1) = 90.0 - CTHETX(i)
ETHEZ1 = ETHETZ(1) * DEGRA
JZO LCOGZ(1) - L(1,1) * COS(ETHEZI)

* LINK TWO
9 AX2 = MATB(13)

VELX2 =INTGRL(O.,AX2)
LCOGX2 =INTGRL(X2,VELX2)
LCOGX(2) = LCOGX2
AY2 =MATB(14)
VELY2 =INTGRL(O.,AY2)
LCOGY2 =INTGRL(Y2,VELY2)
LCOGY(2) = LCOGY2
AZ2 =MATB(15)
VELZ2 =INTGRL(. ,AZ2)
LCOGZ2 =INTGRL(Z2,VELZ2)
LCOGZ(2) = LCOGZ2
WD2X -MATB(16)

W2X INTGRL(0. ,WD2X)
THEXR2 = INTGRL(TY2,W2X)
JX1 =. LCOGX(2) - L(2,i) * COS(TX2)
WDX' 2) WD2X
WX(2 2 2
CTHETX (2) = THEXR2 * RADEG
ETHETY (2) = CTHETX(2)
W02Y MATB(17)
W2Y INTGRL(0. ,WD2Y)
THEMR = INTGRL(0. ,W2Y)
JYl =LCOGY(2) - L(2,1) * COS (THEXR2)
WDY(2) WD2Y
wy 2) =w2y
CTHETYf2) =THEYR2 *RADEG
WD2Z MAT8( iS)
W2Z INTGRL(0. ,WD2Z)
THEZR2 = INTGRL(0.,W2Z)
WDZ12) =W02Z

CTHETZK") THEZRZ * RA1,EGj
ETHETZi2 ) = 90.D - C:THETX-:2)
ETHEZ'2 = ETHET'(2 *IEGRA
IZ1 = L-G )- L(2,1) - OS(ETHEZ2

AX MAT? 2
E: L::-L A

E Y IPL AY



LCOGY3 = INTGRL(Y3,VELY3)
LCOGY(3) = LCOGY3
AZ3 = MATB(24)
VELZ3 =INTGRL(O.,AZ3)
LCOGZ3 =INTGRL(Z3,VELZ3)
LCOGZ(3) = LCOGZ3
WD3X =MATB(25)

* W3X I NTGRL(O.,WD3X)
THEXR3 = INTGRL(TY3 W3X)
JX2 = LCOGX(3) - L(A,l) * COS(TX3)
WDX(3) =WD3X
WX(3) =W3X
CTHETX (3) = THEXR3 * RADEG
ETHETY (3) = CTHETX(3)
WD3Y =MATB(26)
W3Y =INTGRL(O.,WD3Y)
THEYR3 =INTGRL(O.,W3Y)
JY2 = LCOGY(3) - L(3,1) * COS(THEXR3)
WDY(3) =WD3Y
WY(3) =W3Y
CTHETY(3) = THEYR3 * RADEG
WD3Z =MATB(27)
W3Z INTGRL(O.,WD3Z)
THEZR3 = INTGRL(0.,W3Z)
WDZ(3) = WD3Z
WZ(3) = W3Z
CTHETZ (3) = THEZR3 * RADEG
ETHETZ (3) = 90.0 - CTHETX(3)
ETHEZ3 = ETHETZ(3) * DEGRA
JZ2 = LCOGZ(3) - L(3,1) * COS(ETHEZ3)

DYNAMIC

*COMPUTE THEORITICAL TORQUE,TlX AND T2X
Y = L(3,1) COS (THEXR3)Z = L(3,1) SIN(TEXR3)
FZ2 =-MASS3*AZ3
FY2 = -MASS3 * AY3
FZ1 =FZ2 - MASS2 * Z2
FYi = FY2 - MASS2 *AYi2
TORY2X = (MASS3 * L(3 2)**2)*WDX(3) -(FZ2 *Y)+ (FY2 *Z)
TORYlX = (MASS2*L(2,15* 2)*WDX(2)+TORY2X-FZ1*COS (THEXR2) ...
*L(2, 1)+FY1*SIN(~THEXR2)*L(2,1)-FZ2*L(2,2)*COS(THEXR2)+FY2..
*SIN(THEXR2)*L(2,2)

* COMPUTE ERROR BETWEEN COMPUTED AND INPUTEDVALUES OF TORQUE AT
* JOINT ONE AND TWO

ERRT2X = ((TORY2X-T2X) 4.7553) 100.
ERRTlX ((TORYIX-TlX /4.7553) 100.

END
STOP
FORTRAN

* SUBROUTINE TO COMPUTE THE CROSS PRODUCT OF TWO VECTORS

SUBROUTINE CPROD(VECTA,VECTB,MI,MJ,MK)
IMPLICIT REAL*8 (A-Z)
DIMENSION VECTA(3) ,VECTB(3)
MI = VECT (2 ETB (3) - VECTA (3) * VECTB (2)
MJ = VECTA~i (3 VECTB (1 - VECTA (1 * VECTB(3
MK = VECTA(1) VECTB (2) - VECTA (2) VECTB (1)

RETURN
END
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